
LONGSECTION NETWORK 2 _ SW2.4-1

	95										
	·										
							PROPOSED ROAD				
	90										
	85									1	
											0
LES: ontal 1:500 cal 1:100											
M 80.000											
ODE	SW2.4-1	SW2.4-2		SW2.4-3	0WZ.4-4	SW2.4-5	SW2.4-7		SW2.4-8		SW2.4-10
		NO X		NO.		RB INLET	JONE TO THE TOTAL		NET OLE		NO X
DDE TYPE	X ERRB	JUNCT		JUNCT		KERB IN JUNCT	MANH		KERB IN		JUNCT BO)
STANCE (m)	0000	2.687		6.476	06	8.328	138.715		0.135		2.134
		2		φ o	5	2	5 6		23		58
NAL LEVEL	93.07	92.60		99.00	70.00 60		88 8.56		86.93		87.75
EPTH TO INVERT						·					
PE INVERT LEVEL		17.698	00.790	99.039 90.039	77.866 37.866	86.565 86.351	85.912 85.912 85.574 85.515		84.080 84.080 83.034 83.634		83.315
		G	σ.	∞ ∞ · · · · · · · · · · · · · · · · · ·	χ (C)						
LOPE / LENGTH		4.00% 1:25.0 22.69m	4.00% 1:25.0 43.79m	4.00% 1:25.0 29.31m	4.00% 1:25.0 32.54m	7.48% 1:13.4 5.87m	7.48% 1:13.4 4.52m	2.01% 1:49.8 71.42m	2.01% 1:49.8 22.22m	0.83% 1:120.0 29.77m	0.83% 1:119.9 10.13m
VDDALILICE	DESIGN Q(m3/s) V(m/s)	0.08 2.7	0.08 2.7	0.08 2.7	0.08 2.7	0.22 4.3	0.71 6.0	0.71 3.7	0.87 3.9	0.87 2.8	0.87 2.8
HYDRAULICS	MAX. (0.8D) Q(m3/s) V(m/s)	0.59 4.4	0.59 4.4	0.59 4.4	0.59 4.4	2.28 7.8	2.28 7.8	1.49 4.3	1.49 4.3	1.23 2.9	0.87 2.8 1.23 2.9
IPE SPECIFICATION		450mm Ø SPIGOT & SOCKET	450mm Ø SPIGOT & SOCKET	450mm Ø SPIGOT & SOCKET	450mm Ø SPIGOT & SOCKET	675mm SPIGOT & S	Ø DCKET 675mm Ø GOT & SOCKET	750mm Ø SPIGOT & SOCKET	750mm Ø SPIGOT & SOCKET	825mm Ø Undefined	825mm Undefin

PROPOSED ROAD 1.43% 1:70.0 65.02m 3.51% 1:28.5 41.91m 450mm Ø SPIGOT & SOCKET 450mm Ø SPIGOT & SOCKET SPIGOT & SOCKET SPIGOT & SOCKET SPIGOT & SOCKET

CONSTRUCTION NOTES: STORMWATER

1. <u>CONSTRUCTION:</u>

- 1.1. ALL CONSTRUCTION, TESTING AND MATERIALS TO COMPLY WITH 1200 SERIES OF SPECIFICATIONS.
- 1.2. PIPE BEDDING TO BE CLASS B AS PER SABS 1200 LB WITH BEDDING CRADLE OF SELECTED FILL QUALITY.
- 1.3. PIPES AS PER DRAWING. 1.4. WHERE STORMWATER PIPES CROSS THE SEWER LINE A CLASS 'A' BEDDING MUST BE PROVIDED 2.0m EACH WAY
- UNDER THE STORMWATER LINE. 1.5. MINIMUM FALLS ON ALL PIPES = 1:100 U.O.S.
- 2. <u>MATERIALS:</u>
- 2.1. ALL BRICKS TO BE ENGINEERING UNITS TYPE NFXE-14 AS PER SABS 227 & 285.
- 2.2. MANHOLE COVERS IN ROADWAYS TO BE STANDARD D.C HEAVY DUTY CAST IRON COVERS AND FRAMES IN ACCORDANCE WITH SABS 558 TYPE 2B. IN WALKWAYS
- AND WHERE POTENTIAL TRAFFIC CAN OCCUR HEAVY DUTY PRECAST COVERS TO BE USED AND IN ALL OTHER AREAS LIGHT DUTY PRECAST CONCRETE CAN BE USED. 2.3. STORMWATER PIPES TO BE SPIGOT AND SOCKET, CLASS

100D TO BE USED UNDER ROADWAYS AND 50D IN

- NON-TRAFFICKED AREAS. 2.4. HDPE STORMWATER PIPES TO BE 8KN/m² RING STIFFNESS CORRUGATED PIPES AS SUPPLIED BY
- MAGNUM OR SIMILAR APPROVED.
- 2.5. STEP IRONS TO COMPLY WITH SABS 1247. 2.6. DUE TO THE CORROSIVE NATURE OF THE SOIL NO
- GALVANISED MATERIAL MAY BE USED.
- 3. NOTE ON STORMWATER CONNECTIONS:
- 3.1. CONTRACTOR TO LOCATE THE EXSTING STORMWATER PIPES ON SITE AND VERIFY ALL INVERT LEVELS WITH
- THE ENGINEER PRIOR TO ANY CONSTRUCTION. 3.2. THE EXSTING SERVICES ARE TO ADEQUATELY PROTECTED AND ANY DAMAGE IS TO REPAIRED AT THE
- CONTRACTORS COST. 3.3. ALL NEW STROMWATER PIPES MUST BE LAID AT AN ANGLE OF NOT LESS THAN 30 DEG. AND NOT MORE
- THAN 60 DEG. TO THE EXISTING PIPE. 3.4. ALL PIPES MUST BE LAID SOFFIT TO SOFFIT.

LOCALITY PLAN

/ REVISION										

ISSUE / I 3 2021-07-29 BIM 360 REVISION 1 2021-06-21 FOR CONSTRUCTION 0 2021-04-16 FOR CONSTRUCTION
I/R DATE DESCRIPT DESCRIPTION

DRAWING STATUS

STORMWATER LEGEND

(DS:X / CP:X / US:X)

====== EXISTING STORMWATER

NEW KERB INLET

GI NEW GRID INLET

MH NEW MANHOLE

EXGI EXISTING GRID INLET

EXISTING MANHOLE

EXJB EXISTING JUNCTION BOX

→ NEW JUNCTION BOX

NEW STORMWATER PIPE REFER TO LONG SECTION FOR PIPE TYPE & DIA

NEW SUB-SOIL LINE

TRANSITION LENGTH UPSTREAM (US)

TRANSITION LENGTH DOWNSTREAM (DS)

CATCHPIT LENGTH (CP)

FOR CONSTRUCTION

	ARCHITECT
	COA
	CLIENT
	DEVMCO
- 1	

SALTA INFRASTRUCTURE

PROJECT

CHECKED BY:

APPROVED BY:

DRAWING CHECKS

D. vd MERWE DESIGNED BY: DRAWN BY: J. OOSTHUIZEN

DRAWING TITLE STORMWATER LONGSECTIONS

NETWORK 2 SHEET 2 SCALE

DRAWING NUMBER

2019-0173-C-5855 (C) COPYRIGHT RESERVED

As indicated

D. vd MERWE D. vd MERWE

The content of this document is privileged and confidential and may not be disclosed or reproduced without the express authorisation of the author, being "STRUXIT PROJECTS (PTY) LTD" ISO FULL BLEED A0 (841.00 X 1189.00 MM)